Charge transport across insulating self-assembled monolayers: non-equilibrium approaches and modeling to relate current and molecular structure.

نویسندگان

  • Fatemeh Mirjani
  • Joseph M Thijssen
  • George M Whitesides
  • Mark A Ratner
چکیده

This paper examines charge transport by tunneling across a series of electrically insulating molecules with the structure HS(CH2)4CONH(CH2)2R) in the form of self-assembled monolayers (SAMs), supported on silver. The molecules examined were studied experimentally by Yoon et al. (Angew. Chem. Int. Ed. 2012, 51, 4658-4661), using junctions of the structure AgS(CH2)4CONH(CH2)2R//Ga2O3/EGaIn. The tail group R had approximately the same length for all molecules, but a range of different structures. Changing the R entity over the range of different structures (aliphatic to aromatic) does not influence the conductance significantly. To rationalize this surprising result, we investigate transport through these SAMs theoretically, using both full quantum methods and a generic, independent-electron tight-binding toy model. We find that the highest occupied molecular orbital, which is largely responsible for the transport in these molecules, is always strongly localized on the thiol group. The relative insensitivity of the current density to the structure of the R group is due to a combination of the couplings between the carbon chains and the transmission inside the tail. Changing from saturated to conjugated tail groups increases the latter but decreases the former. This work indicates that significant control over SAMs largely composed of nominally insulating groups may be possible when tail groups are used that are significantly larger than those used in the experiments of Yoon et al.1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supporting Information Charge Transport Across Insulating Self-Assembled Monolayers: Non-Equilibrium Approaches and Modeling to Relate Current and Molecular Structure

∗To whom correspondence should be addressed †Chemical Engineering Department, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands ‡Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands ¶Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford, Cambridge, Massachusetts, 02138, USA; and Kavli Ins...

متن کامل

Replacing −CH2CH2− with −CONH− Does Not Significantly Change Rates of Charge Transport through Ag-SAM//Ga2O3/EGaIn Junctions

This paper describes physical-organic studies of charge transport by tunneling through self-assembled monolayers (SAMs), based on systematic variations of the structure of the molecules constituting the SAM. Replacing a −CH2CH2− group with a −CONH− group changes the dipole moment and polarizability of a portion of the molecule and has, in principle, the potential to change the rate of charge tr...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications

Principal goals in organic thin-film transistor (OTFT) gate dielectric research include achieving: (i) low gate leakage currents and good chemical/thermal stability, (ii) minimized interface trap state densities to maximize charge transport efficiency, (iii) compatibility with both pand nchannel organic semiconductors, (iv) enhanced capacitance to lower OTFT operating voltages, and (v) efficien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 12  شماره 

صفحات  -

تاریخ انتشار 2014